
Recitation – week 11

Pranut Jain

Announcements

• Project 2 grading notes

• Project 3 out

Disclaimer

• Slides originally by Andrea for Dr. Remzi H. Arpaci-

Dusseau, UNIVERSITY of WISCONSIN-

MADISON

Review:

Match Description

Name of approach

(covered previous lecture):

Segmentation

Static Relocation

Base

Base+Bounds

Time Sharing

Description

• one process uses RAM at a time

• rewrite code and addresses before

running

• add per-process starting location to virt

addr to obtain phys addr

• dynamic approach that verifies address

is in valid range

• several base+bound pairs per process

Review: Segmentation

Assume 14-bit virtual addresses, high 2 bits indicate segment

Segments:

0=>code

1=>heap

2=>stack.

0x0000 0x1000 0x2000 0x3000 0x4000

0x4000 0x5000 0x6000 0x7000 0x8000

Virt Mem

Phys Mem

? ? ?
Code Heap Stack

Seg Base Bounds

0

1

2

0xfff

0xfff

0x7ff

0x4000

0x5800

0x6800

Where doe segment table live?

All registers, MMU

Review:

Memory Accesses

0x0010: movl0x1100, %edi
0x0013: addl $0x3, %edi
0x0019: movl%edi, 0x1100

Physical Memory Accesses?

1) Fetch instruction at logical addr 0x0010

• Physical addr:

Exec, load from logical addr 0x1100

• Physical addr:

2) Fetch instruction at logical addr 0x0013

• Physical addr:

Exec, no load

3) Fetch instruction at logical addr 0x0019

• Physical addr:

Exec, store to logical addr 0x1100

• Physical addr:

Seg Base Bounds

0 0x4000 0xfff

1 0x5800 0xfff

2 0x6800 0x7ff

0x4010

0x5900

0x4013

0x4019

0x5900

%rip: 0x0010

Total of 5 memory references (3 instruction fetches, 2 movl)

Problem:

Fragmentation
Definition: Free memory that can’t be usefully allocated

Why?
• Free memory (hole) is too small and scattered

• Rules for allocating memory prohibit using this free space

Types of fragmentation
• External: Visible to allocator (e.g., OS)

• Internal: Visible to requester (e.g., if must allocate at some granularity)

Segment A

Segment C

Segment D

Segment B

Segment E

No contiguous space!

useful

free

Allocated to requester

Internal

External

Paging

Goal: Eliminate requirement that address space is contiguous

• Eliminate external fragmentation

• Grow segments as needed

Idea: Divide address spaces and physical memory into fixed-sized pages

• Size: 2n, Example: 4KB

• Physical page: page frame

Process 1

Process 2

Logical View

P
h

y
si

ca
l

V
ie

w

Process 3

Translation of

Page Addresses
• How to translate logical address to physical address?

• High-order bits of address designate page number

• Low-order bits of address designate offset within page

page number

frame number

page offset

page offset

Logical address

Physical address

32 bits

translate

20 bits 12 bits

No addition needed; just append bits correctly…

How does format of address space determine number of pages and size of pages?

Quiz: Address Format

Page Size Low Bits (offset)

16 bytes 4

1 KB 10

1 MB 20

512 bytes 9

4 KB 12

Given known page size, how many bits are needed in address to specify offset in page?

Quiz: Address Format

Page Size Low Bits
(offset)

Virt Addr Bits High Bits
(vpn)

16 bytes 4 10 6

1 KB 10 20 10

1 MB 20 32 12

512 bytes 9 16 5

4 KB 12 32 20

Given number of bits in virtual address and bits for offset,

how many bits for virtual page number?

Correct?

7

Quiz: Address Format

Page Size Low Bits
(offset)

Virt Addr Bits High Bits
(vpn)

16 bytes 4 10 6

Virt Pages

1 KB 10 20 10

1 MB 20 32 12

512 bytes 9 16 5

4 KB 12 32 20

Given number of bits for vpn, how many virtual pages can there be in an address space?

64

1 K

4 K

32

1 MB

VirtUAL => Physical PAGE

Mapping

How should OS translate VPN to PPN?

For segmentation, OS used a formula (e.g., phys addr = virt_offset + base_reg)

For paging, OS needs more general mapping mechanism

What data structure is good?

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Addr Mapper

Big array: pagetable

Number of bits in

virtual address

format does not

need to equal

number of bits in

physical address

format

The Mapping

Virt Mem

Phys Mem

P2 P3P1

Virt Mem

Phys Mem

P2 P3

0 1 2 3 4 5 6 7 8 9 10 11

P1

Page Tables:

P1
3

1

7

10

P2
0

4

2

6

P3

Quiz:

Fill in Page Table

8

5

9

11

Where Are Pagetables

Stored?
How big is a typical page table?

- assume 32-bit address space
- assume 4 KB pages
- assume 4 byte entries

Final answer: 2 ^ (32 - log(4KB)) * 4 = 4 MB

• Page table size = Num entries * size of each entry

• Num entries = num virtual pages = 2^(bits for vpn)

• Bits for vpn = 32– number of bits for page offset

= 32 – lg(4KB) = 32 – 12 = 20

• Num entries = 2^20 = 1 MB

• Page table size = Num entries * 4 bytes = 4 MB

Implication: Store each page table in memory

• Hardware finds page table base with register (e.g., CR3 on x86)

What happens on a context-switch?

• Change contents of page table base register to newly scheduled process

• Save old page table base register in PCB of descheduled process

Other PT info

What other info is in pagetable entries besides translation?

• valid bit

• protection bits

• present bit (needed later)

• reference bit (needed later)

• dirty bit (needed later)

Pagetable entries are just bits stored in memory

• Agreement between hw and OS about interpretation

Advantages of

Paging

No external fragmentation

• Any page can be placed in any frame in physical memory

Fast to allocate and free

• Alloc: No searching for suitable free space

• Free: Doesn’t have to coalesce with adjacent free space

• Just use bitmap to show free/allocated page frames

Simple to swap-out portions of memory to disk

• Page size matches disk block size

• Can run process when some pages are on disk

• Add “present” bit to PTE

Disadvantages of

Paging

Internal fragmentation: Page size may not match size needed by process
• Wasted memory grows with larger pages

• Tension?

Additional memory reference to page table --> Very inefficient
• Page table must be stored in memory

• MMU stores only base address of page table

• Solution: Add TLBs

Storage for page tables may be substantial
• Simple page table: Requires PTE for all pages in address space

• Entry needed even if page not allocated

• Problematic with dynamic stack and heap within address space

• Page tables must be allocated contiguously in memory

• Solution: Combine paging and segmentation

Stack

Code

Heap

